

CIPACK Interdepartmental Center for PACKaging

INNOVATIVE SYSTEMS FOR PACKAGING

Certified by Emilia Romagna

• What is Cipack

2

Areas of research

- What can we do? A few examples
 - Innovative materials for packaging
 - Advanced systems for packaging
 - Environmental impact of packaging
 - Quality and hygiene of packaging
- MASTER IN PACKAGING

INTERDEPARTMENTAL CENTRE FOR PACKAGING WHAT IS CIPACK?

- ✓ The Interdepartmental Center for PACKaging is a research center that works inside the University of Parma, under the agrifood platform for High Technology Network of Emilia Romagna Region.
- It includes different departments: Industrial Engineering, Chemistry, Physics, Economics, Pharmacy, Life Science and Medicine.
- It aims to promote and coordinate research activities in basic and applied issues relating to packaging and bottling in particular for food industry and pharmaceutical industry.

INTERDEPARTMENTAL CENTRE FOR PACKAGING

AREAS OF RESEARCH

A) Innovative materials for packaging

B) Advanced systems for packaging

C) Environmental impact of packaging

D) Quality and hygiene of packaging

INNOVATIVE MATERIALS FOR PACKAGING

ACTIVE PACKAGING: antimicrobial controlled release

MODEL STUDY

Deposition of a coating containing lysozyme on PET and measurement of the time release.

> QUANTITY ±12 mg/m² THICKNESS ≤1 μm

INNOVATIVE MATERIALS FOR PACKAGING

Results

- Quality tests on plates affirm the effectiveness of the release
- Case studies in food simulants confirm the controlled release
- Microbiological studies demonstrate that the antimicrobial activity persists after deposition

Applications

- Substrates: PE, PP and <u>PLA</u>
- Possibility of modulating the structure of the coating to accelerate, decelerate or stop the release of the substance

INNOVATIVE MATERIALS FOR PACKAGING

BARRIER PROPERTIES FOR PACKAGING

TAKE CARE OF ENVIRONMENT!

Thin coatings allow a reduction in the thickness of the plastic polymers

Deposition of nanometric coating to improve the gas barrier properties

O₂ BARRIER COATINGS FOR PLASTIC MATERIALS

Permeability with ~ 1 μ m thick coating

SUBSTRATE	PERMEABILITY cc/(m²*day) 23°C, 0% RH
PET (12µm)coated	0.05 – 0.5 (standard = 30 – 90)
Nylon-6 (20µm) coated	0.02 – 0.5 (standard = 20 - 40)
PP (20µm) coated	0.5 – 1.5 (standard = 1500 - 2500)

INNOVATIVE MATERIALS FOR PACKAGING

SUPERHYDROPHOBIC TREATMENT FOR WOOD AND CARDBOARD

SOL-GEL technique for the functionalization of surfaces

INNOVATIVE MATERIALS FOR PACKAGING

SUPERHYDROPHOBIC TREATMENT FOR CARDBOARD

INNOVATIVE MATERIALS FOR PACKAGING

MOH and GREASE BARRIER, cardboard treatment

No coating	Bad coating	Excellent Coating	Good coating	Bad coating
				0
(Den of				

RESULTS

ASTER

Front Back Good Sol 2 Excellent Sol 3

ECO-Friendly Solution

The treated material is considered to be **MONOMATERIAL**.

The SOL can be prepared with natural molecules therefore biodegradable.

ADVANCED SYSTEM FOR PACKAGING

DISCRETE EVENT SIMULATION IN THE DESIGN OF PACKAGING SYSTEMS

- ✓ The simulation is the virtual reproduction in time from a system or real process
- ✓ The system is represented as a chronological sequence of events
- ✓ Each event changes the state of the system

Applications

- Support tool for the design phase: it provides important information on the performance of a system before its physical implementation
- What-if analysis: to evaluate different configurations of the same system, identifying bottlenecks in a system

DISCRETE EVENT SIMULATION IN THE DESIGN OF PACKAGING SYSTEMS

SIMULATION OF MATERIAL HANDLING

It's possible to analyze the performance of a system by identifying bottlenecks.

PERFORMANCE EVALUATION: TRANSFER SYSTEM FROM FILLING TO WAREHOUSE

ASTER

ADVANCED SYSTEM FOR PACKAGING

COMPUTATIONAL FLUID DYNAMICS SIMULATION

CFD (Computational Fluid Dynamics)

Fluid dynamics problem solving using computer

Applications

- 1. Mixing and dissolution of species.
- 2. Heat treatment.
- 3. Study of the motion of fluids within pipes.

INDUSTRIAL APPLICATION OF CFD

STERILIZATION OF FLEXIBLE PACKAGING

✓ Determination of the optimal flow of sterilizing mixture (with H_2O_2 , hydrogen peroxide).

 \checkmark Optimization of the process for the removal of the aseptic mixture using sterile air.

UV REACTOR FOR THE DISINFECTION OF WATER

17

It's possible to:

 ✓ calculate the amount of UV radiation absorbed by the particles of water

 \checkmark find the optimal layout and lamp

✓ calculate the speed of water flow

MATURATION ROOM OF SALAMI (SAUSAGES)

✓ Modifying the flow rate and the input mode of the air it has been possible to obtain a flow able to ensure a more uniform seasoning of sausages

ENVIRONMENTAL IMPACT OF PACKAGING

LIFE CYCLE ASSESSMENT

The LCA is a process that allows you to evaluate and quantify the environmental impacts associated with a product, process or activity.

The entire life cycle of a product it's considered, from raw material extraction to disposal.

ENVIRONMENTAL IMPACT OF PACKAGING

INSTRUMENT OF COMMUNICATION AND GREEN MARKETING

✓ Large-scale distribution requires that the companies declare the impacts of products.

✓ Eco-friendly products are considered more attractive by consumers

Examples of eco-labels

QUALITY AND HYGIENE OF PACKAGING

ARTIFICIAL OLFACTORY SYSTEMS

20

Optimized for "QUALITY CONTROL" applications

PRACTICAL APPLICATIONS

Parmigiano Reggiano cheese quality control

Paperboard quality control

Olive oil defects

Evaluation and control of raw materials

Packaging quality control

QUALITY AND HYGIENE OF PACKAGING

ADVANTAGES of Artificial Olfactory Systems

QUALITY AND HYGIENE OF PACKAGING AGEING AND MIGRATION TESTS

Evaluation of packaging resistance

22

Variable parameters:

- -Temperature
 - Humidity
 - Light

- ✓Global and specific migration
- ✓ Specific migrations in tenax
- ✓Gas chromatographic determination of

residual solvents

- ✓ Sensory evaluation for transmission of taste
- ✓IR and UV-Vis spectroscopy analysis

Master Universitario di primo livello (60 CFU)

Master in Packaging

QUALIFICA RICHIESTA

Laurea di primo livello o magistrale in: -Scienze Matematiche, Fisiche e Naturali; -Ingegneria e Architettura;

- -Farmacia;
- -Medicina e Veterinaria;
- -Agraria;
- -Economia e Giurisprudenza;

PROGRAMMA DEL MASTER 2012/2013

- 3 mesi di lezione (da lunedi a venerdi)
- 3 mesi di stage aziendale

CORSI D'INSEGNAMENTO

Valutatori di Sistemi di Gestione per la Qualità UNI EN ISO 9001:2008 Materiali Metallici Materiali Polimerici Materiali Vetrosi Conformità dell'imballaggio ai Regolamenti Europei Materiali Cellulosici ed Accoppiati Marketing e Brand Identity Tecniche Analitiche per il Controllo e la Caratterizzazione Tecnologie di Stampa per Imballaggio Contaminanti e Cessioni Tecnologie e Impianti per il Confezionamento alimentare Package Design e Comunicazione Fondamenti di Microbiologia Progettazione per la Distribuzione ed il trasporto degli Imballaggi Metodi di Progettazione Meccanica Automazione Industriale Tecnologie per Imballaggio e Confezionamento Tecnologie di Condizionamento e Shelf-life dei prodotti Confezionati

MISSION

Il Master forma studenti che conoscono i materiali e i prodotti da confezionare, le loro incompatibilità e resistenza alle aggressioni chimiche; sono in grado di progettare gli imballaggi valutandone anche gli aspetti normativi ed economici con un'attenzione sempre maggiore al recupero degli imballaggi e all'ambiente. Inoltre ha nozioni di logistica, di controllo di qualità, di marketing, di comunicazione e delle legislazioni connesse.

NOVITÀ 2012-2013: SPECIALE UDITORI

L'edizione 2012/2013 del Master in PACKAGING prevede anche la possibilità di accesso agli "uditori". La presenza come uditori consentirà a persone già inserite in contesti aziendali di partecipare ai singoli momenti formativi di interesse per un limitato periodo di tempo.

www.masterpackaging. it

THANKS FOR YOUR ATTENTION!

FOR MORE INFORMATION:

nicola.zucchetto@unipr.it

WWW.CIPACK.IT

